Real-time prediction of TBM penetration rates using a transformer-based ensemble deep learning model
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 105793 |
Journal / Publication | Automation in Construction |
Volume | 168 |
Issue number | Part A |
Online published | 30 Sept 2024 |
Publication status | Published - 1 Dec 2024 |
Link(s)
Abstract
Targeted to address the challenge of accurately predicting Tunnel Boring Machine (TBM) penetration rates in real-time, this paper explores how to develop a deep learning method that effectively and efficiently predicts penetration rates. A deep learning method termed a transformer-based ensemble bi-directional Long Short-Term Memory network (TransBiLSTMNet) is developed, comprising several modules, namely, the data processing, a backbone ensemble model, an improved transformer, loss function, and evaluation metrics. Validated on an actual TBM operation database, the developed method attains excellent performance with Mean Squared Error (MSE) of 0.1372, Mean Absolute Error (MAE) of 0.2099, Root MSE (RMSE) of 0.3704, Mean Absolute Percentage Error (MAPE) of 0.7091 %, and R2 of 0.9961. Furthermore, the ablation experiments and comparative results illustrate the superior predictive accuracy. Accordingly, the TransBiLSTMNet provides a robust solution for real-time TBM operation management. Future research could focus on refining the model and exploring its application to other predictive scenarios. © 2024 Elsevier B.V.
Research Area(s)
- BiLSTM, Deep learning, Penetration rate, TBM performance, Transformer
Citation Format(s)
Real-time prediction of TBM penetration rates using a transformer-based ensemble deep learning model. / Zhang, Minggong; Ji, Ankang; Zhou, Chang et al.
In: Automation in Construction, Vol. 168, No. Part A, 105793, 01.12.2024.
In: Automation in Construction, Vol. 168, No. Part A, 105793, 01.12.2024.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review