Real-time in vitro monitoring of the subcellular toxicity of inorganic Hg and methylmercury in zebrafish cells

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

1 Scopus Citations
View graph of relations



Original languageEnglish
Article number105859
Journal / PublicationAquatic Toxicology
Online published8 May 2021
Publication statusPublished - Jul 2021


Mercury (Hg) is a prominent environmental contaminant and can cause various subcellular effects. Elucidating the different subcellular toxicities of inorganic Hg (Hg2+) and methylmercury (MeHg) is critical for understanding their overall cytotoxicity. In this study, we employed aggregation-induced emission (AIE) probes to investigate the toxicity of Hg at the subcellular level using an aquatic embryonic zebrafish fibroblast cell line ZF4 as a model. The dynamic monitoring of lysosomal pH and the mapping of pH distribution during Hg2+ or MeHg exposure were successfully realized for the first time. We found that both Hg2+ and MeHg decreased the mean lysosomal pH, but with contrasting effects and mechanisms. Hg2+ had a greater impact on lysosomal pH than MeHg at a similar intracellular concentration. In addition, Hg2+ in comparison to MeHg exposure led to an increased number of lysosomes, probably because of their different effects on autophagy. We further showed that MeHg (200 nM) exposure had an inverse effect on mitochondrial respiratory function. A high dose (1000 nM) of Hg2+ increased the amount of intracellular lipid droplets by 13%, indicating that lipid droplets may potentially play a role in Hg2+detoxification. Our study suggested that, compared with other parameters, lysosome pH was most sensitive to Hg2+ and MeHg. Therefore, lysosomal pH can be used as a potential biomarker to assess the cellular toxicity of Hg in vitro.

Research Area(s)

  • AIE probe, Hg2+, Lipid droplets, Lysosomes, MeHg, Mitochondria