TY - JOUR
T1 - Rapid magnetic-mediated solid-phase extraction and pre-concentration of selected endocrine disrupting chemicals in natural waters by poly(divinylbenzene-co-methacrylic acid) coated Fe3O4 core-shell magnetite microspheres for their liquid chromatography-tandem mass spectrometry determination
AU - Li, Qingling
AU - Lam, Michael H.W.
AU - Wu, Rudolf S.S.
AU - Jiang, Biwang
PY - 2010/2/19
Y1 - 2010/2/19
N2 - A new Fe3O4/poly(divinylbenzene-co-methacrylic acid) core-shell magnetite microspheric material have been successfully developed as magnetic-mediated solid-phase extraction micro-particle sorbent in dispersion mode (MM-SPE-MP) for the determination of selected estrogenic endocrine disrupting chemicals (EDCs), namely: estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2) and bisphenol-A (BPA), in natural water, via quantification by HPLC tandem mass spectrometry. The magnetite Fe3O4 core of this MM-SPE-MP sorbent was fabricated by a solvothermal approach and the thin layer of amphipolar poly(divinylbenzene-co-methacrylic acid) (pDVB-MAA) coating was established via suspension polymerization. The resultant core-shell MM-SPE-MP sorbent material was characterized by electron microscopy, X-ray diffraction and Fourier-transformed infrared spectroscopy. Particle size distribution of the core-shell microspheres was within the range 300-700 nm in diameter and the thickness of the pDVB-MAA coating was ca. 10 nm. This magnetite microspheric material can be easily dispersed in aqueous samples and retrieved by the application of external magnetic field via a small piece of permanent magnet. The MM-SPE-MP process for the selected estrogenic EDCs involved the dispersion of the core-shell microspheric sorbent in water samples with sonication, followed by magnetic aided retrieval of the sorbent and solvent (methanol) desorption of extracted EDCs for LC-MS/MS analysis. Partition equilibrium for all the selected EDCs onto this MM-SPE-MP sorbent was achieved within 15 min. Recoveries of the EDCs were in ranges of 56-111%. Analytes with smaller KOW value showed relatively lower recovery (and relatively longer equilibration time for partitioning). Method detection limits achieved were found to be 1-36 pg ml-1 (n = 3), while the repeatability was 6-34% (p <0.05, n = 3). This work demonstrates the usefulness of MM-SPE-MP in the rapid and highly sensitive monitoring of trace organic contaminants in natural waters. © 2009 Elsevier B.V. All rights reserved.
AB - A new Fe3O4/poly(divinylbenzene-co-methacrylic acid) core-shell magnetite microspheric material have been successfully developed as magnetic-mediated solid-phase extraction micro-particle sorbent in dispersion mode (MM-SPE-MP) for the determination of selected estrogenic endocrine disrupting chemicals (EDCs), namely: estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2) and bisphenol-A (BPA), in natural water, via quantification by HPLC tandem mass spectrometry. The magnetite Fe3O4 core of this MM-SPE-MP sorbent was fabricated by a solvothermal approach and the thin layer of amphipolar poly(divinylbenzene-co-methacrylic acid) (pDVB-MAA) coating was established via suspension polymerization. The resultant core-shell MM-SPE-MP sorbent material was characterized by electron microscopy, X-ray diffraction and Fourier-transformed infrared spectroscopy. Particle size distribution of the core-shell microspheres was within the range 300-700 nm in diameter and the thickness of the pDVB-MAA coating was ca. 10 nm. This magnetite microspheric material can be easily dispersed in aqueous samples and retrieved by the application of external magnetic field via a small piece of permanent magnet. The MM-SPE-MP process for the selected estrogenic EDCs involved the dispersion of the core-shell microspheric sorbent in water samples with sonication, followed by magnetic aided retrieval of the sorbent and solvent (methanol) desorption of extracted EDCs for LC-MS/MS analysis. Partition equilibrium for all the selected EDCs onto this MM-SPE-MP sorbent was achieved within 15 min. Recoveries of the EDCs were in ranges of 56-111%. Analytes with smaller KOW value showed relatively lower recovery (and relatively longer equilibration time for partitioning). Method detection limits achieved were found to be 1-36 pg ml-1 (n = 3), while the repeatability was 6-34% (p <0.05, n = 3). This work demonstrates the usefulness of MM-SPE-MP in the rapid and highly sensitive monitoring of trace organic contaminants in natural waters. © 2009 Elsevier B.V. All rights reserved.
KW - Core-shell microspheres
KW - Endocrine disrupting chemicals
KW - Estrogen mimics
KW - Magnetite microspheres
KW - Solid-phase extraction
UR - http://www.scopus.com/inward/record.url?scp=74849139034&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-74849139034&origin=recordpage
U2 - 10.1016/j.chroma.2009.12.035
DO - 10.1016/j.chroma.2009.12.035
M3 - RGC 21 - Publication in refereed journal
C2 - 20047750
SN - 0021-9673
VL - 1217
SP - 1219
EP - 1226
JO - Journal of Chromatography A
JF - Journal of Chromatography A
IS - 8
ER -