Ranked Keyword Search over Encrypted Cloud Data Through Machine Learning Method

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

  • Yinbin Miao
  • Wei Zheng
  • Ximeng Liu
  • Kim-Kwang Raymond Choo
  • Robert H. Deng

Related Research Unit(s)

Detail(s)

Original languageEnglish
Journal / PublicationIEEE Transactions on Services Computing
Online published4 Jan 2022
Publication statusOnline published - 4 Jan 2022

Abstract

Ranked keyword search over encrypted data has been extensively studied in cloud computing as it enables data users to find the most relevant results quickly. However, existing ranked multi-keyword search solutions cannot achieve efficient ciphertext search and dynamic updates with forward security simultaneously. To solve the above problems, we first present a basic Machine Learning-based Ranked Keyword Search (ML-RKS) scheme in the static setting by using the k-means clustering algorithm and a balanced binary tree. ML-RKS reduces the search complexity without sacrificing the search accuracy, but is still vulnerable to forward security threats when applied in the dynamic setting. Then, we propose an Enhanced ML-RKS (called ML-RKS+) scheme by introducing a permutation matrix. ML-RKS+ prevents cloud servers from making search queries over newly added files via previous tokens, thereby achieving forward security. The security analysis proves that our schemes protect the privacy of indexes, query tokens and keywords. Empirical experiments using the real-world dataset demonstrate that our schemes are efficient and feasible in practical applications.

Research Area(s)

  • Binary trees, Complexity theory, Cryptography, Indexes, Keyword search, Security, Servers

Citation Format(s)

Ranked Keyword Search over Encrypted Cloud Data Through Machine Learning Method. / Miao, Yinbin; Zheng, Wei; Jia, Xiaohua; Liu, Ximeng; Choo, Kim-Kwang Raymond; Deng, Robert H.

In: IEEE Transactions on Services Computing, 04.01.2022.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review