Quench of molten copper and eutectic mixture in natural seawater

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)987-994
Journal / PublicationInternational Journal of Heat and Mass Transfer
Volume136
Online published16 Mar 2019
Publication statusPublished - Jun 2019

Abstract

The interaction of molten materials with coolant is of significant fundamental interest and is of paramount importance for nuclear safety and material processing as well. This study explores the quenching of melts of copper spheres and a eutectic mixture of bismuth trioxide and tungsten trioxide (BTOP) in de-ionized water and natural seawater through visualization using a high-speed video camera. The results show no fragmentation in the case of molten copper owing to its high surface tension, while the quench of BTOP in de-ionized water and seawater results in extensive fragmentation. The fragmentation in seawater is characterized by a greater fraction of larger debris than that in the de-ionized water. Moreover, the examination of the debris quenched in seawater using scanning electron microscopy reveals a rougher surface, which demonstrates intensive interactions between the BTOP melts and the seawater owing to the complex ions there.

Research Area(s)

  • Fragmentation, Molten materials, Quench, Vapor–liquid interface, Visualization