Quantifying Spatial Activation Patterns of Motor Units in Finger Extensor Muscles

Xinyu Jiang, Haoran Ren, Ke Xu, Xinming Ye, Chenyun Dai*, Edward A. Clancy, Yuan-Ting Zhang, Wei Chen*

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

14 Citations (Scopus)

Abstract

The ability to expertly control different fingers contributes to hand dexterity during object manipulation in daily life activities. The macroscopic spatial patterns of muscle activations during finger movements using global surface electromyography (sEMG) have been widely researched. However, the spatial activation patterns of microscopic motor units (MUs) under different finger movements have not been well investigated. The present work aims to quantify MU spatial activation patterns during movement of distinct fingers (index, middle, ring and little finger). Specifically, we focused on extensor muscles during extension contractions. Motor unit action potentials (MUAPs) during movement of each finger were obtained through decomposition of high-density sEMG (HD-sEMG). First, we quantified the spatial activation patterns of MUs for each finger based on 2-dimension (2-D) root-mean-square (RMS) maps of MUAP grids after spike-triggered averaging. We found that these activation patterns under different finger movements are distinct along the distal-proximal direction, but with partial overlap. Second, to further evaluate MU separability, we classified the spatial activation pattern of each individual MU under distinct finger movement and associated each MU with its corresponding finger with Regularized Uncorrelated Multilinear Discriminant Analysis (RUMLDA). A high accuracy of MU-finger classification tested on 12 subjects with a mean of 88.98% was achieved. The quantification of MU spatial activation patterns could be beneficial to studies of neural mechanisms of the hand. To the best of our knowledge, this is the first work which manages to quantify MU behaviors under different finger movements.
Original languageEnglish
Article number9116986
Pages (from-to)647-655
JournalIEEE Journal of Biomedical and Health Informatics
Volume25
Issue number3
Online published15 Jun 2020
DOIs
Publication statusPublished - Mar 2021
Externally publishedYes

Research Keywords

  • Finger movement mechanism
  • high-density sEMG decomposition
  • motor unit behavior

Fingerprint

Dive into the research topics of 'Quantifying Spatial Activation Patterns of Motor Units in Finger Extensor Muscles'. Together they form a unique fingerprint.

Cite this