Millimeter-Scale Soft Continuum Robots for Large-Angle and High-Precision Manipulation by Hybrid Actuation

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations


Original languageEnglish
Article number2000189
Journal / PublicationAdvanced Intelligent Systems
Issue number2
Online published19 Nov 2020
Publication statusPublished - Feb 2021



Developing small-scale soft continuum robots with large-angle steering capacity and high-precision manipulation offers broad opportunities in various biomedical settings. However, existing continuum robots reach the bottleneck in actuation on account of the contradiction among small size, compliance actuation, large tender range, high precision, and small dynamic error. Herein, a 3D-printed millimeter-scale soft continuum robot with an ultrathin hollow skeleton wall (300 μm) and a large inner-to-outer ratio (0.8) is reported. After coating a thin ferromagnetic elastomer layer (≈100-150 μm), the proposed soft continuum robot equipped with hybrid actuation (tendon- and magnetic-driven mode) achieves large-angle (up to 100 degrees) steering and high-precision (low to 2 μm for static positioning) micromanipulation simultaneously. Specifically, the robot implements an ultralow dynamic tracking error of ≈10 μm, which is ≈30-fold improved than the state of art. Combined with a microneedle/knife or nasopharyngeal swab, the robot reveals the potential for versatile biomedical applications, such as drug injection on the target tissue, diseased tissue ablation, and COVID-19 nasopharyngeal sampling. The proposed millimeter-scale soft continuum robot presents remarkable advances in large-range and high-precise actuation, which provides a new method for miniature continuum robot design and finds broad applications in biomedical engineering.

Research Area(s)

  • magnetic actuations, micromanipulations, millimeter-scale soft continuum robots, tendon driven robots

Download Statistics

No data available