Full-spectrum denoising of high-SNR hyperspectral images
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 450-463 |
Journal / Publication | Journal of the Optical Society of America A: Optics and Image Science, and Vision |
Volume | 36 |
Issue number | 3 |
Publication status | Published - 1 Mar 2019 |
Externally published | Yes |
Link(s)
Abstract
The high spectral redundancy of hyper/ultraspectral Earth-observation satellite imaging raises three challenges: (a) to design accurate noise estimation methods, (b) to denoise images with very high signal-to-noise ratio (SNR), and (c) to secure unbiased denoising. We solve (a) by a new noise estimation, (b) by a novel Bayesian algorithm exploiting spectral redundancy and spectral clustering, and (c) by accurate measurements of the interchannel correlation after denoising. We demonstrate the effectiveness of our method on two ultraspectral Earth imagers, IASI and IASI-NG, one flying and the other in project, and sketch the major resolution gain of future instruments entailed by such unbiased denoising. © 2019 Optical Society of America.
Bibliographic Note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].
Citation Format(s)
Full-spectrum denoising of high-SNR hyperspectral images. / Colom, Miguel; Morel, Jean-Michel.
In: Journal of the Optical Society of America A: Optics and Image Science, and Vision, Vol. 36, No. 3, 01.03.2019, p. 450-463.
In: Journal of the Optical Society of America A: Optics and Image Science, and Vision, Vol. 36, No. 3, 01.03.2019, p. 450-463.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review