H(div)-conforming HDG methods for the stress-velocity formulation of the Stokes equations and the Navier–Stokes equations

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)1639-1678
Journal / PublicationNumerische Mathematik
Volume156
Issue number4
Online published17 Jun 2024
Publication statusPublished - Aug 2024

Link(s)

Abstract

In this paper we devise and analyze a pressure-robust and superconvergent HDG method in stress-velocity formulation for the Stokes equations and the Navier–Stokes equations with strongly symmetric stress. The stress and velocity are approximated using piecewise polynomial space of order k and (div; Ω)-conforming space of order + 1, respectively, where k is the polynomial order. In contrast, the tangential trace of the velocity is approximated using piecewise polynomials of order k. Moreover, the characterization of the proposed schemes shows that the globally coupled unknowns are the normal trace and the tangential trace of velocity, and the piecewise constant approximation for the trace of the stress. The discrete H1-stability is established for the discrete solution. The proposed formulation yields divergence-free velocity, but causes difficulties for the derivation of the pressure-independent error estimate given that the pressure variable is not employed explicitly in the discrete formulation. This difficulty can be overcome by observing that the L2 projection to the stress space has a nice commuting property. Moreover, superconvergence for velocity in discrete H1-norm is obtained, with regard to the degrees of freedom of the globally coupled unknowns. Then the convergence of the discrete solution to the weak solution for the Navier–Stokes equations via the compactness argument is rigorously analyzed under minimal regularity assumption. The strong convergence for velocity and stress is proved. Importantly, the strong convergence for velocity in discrete H1-norm is achieved. Several numerical experiments are carried out to confirm the proposed theories. © The Author(s) 2024.

Research Area(s)

  • 65M12, 65M15, 65M22, 65M60

Download Statistics

No data available