Oxidation and reduction of copper oxide thin films

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

148 Scopus Citations
View graph of relations

Author(s)

  • Jian Li
  • G. Vizkelethy
  • P. Revesz
  • J. W. Mayer
  • K. N. Tu

Detail(s)

Original languageEnglish
Pages (from-to)1020-1029
Journal / PublicationJournal of Applied Physics
Volume69
Issue number2
Publication statusPublished - 1991
Externally publishedYes

Abstract

We have employed 16O(α,α)16O oxygen resonance measurement and transmission electron microscopy to study the oxidation and reduction of copper oxide thin films. The in- and out-diffusion of oxygen-induced oxygen concentration variations and microstructural changes in the films were monitored. The study of reduction was carried out by annealing CuO and Cu4O3 thin films in vacuum. Dark-field microscopic images show that isolated and large Cu2O grains emerge from the small CuO and Cu4O3 grain matrices. The growth of Cu 2O grains in both CuO and Cu4O3 matrices has been measured to be linear with time, and have activation energies 1.1 and 0.7 eV, respectively. The main controlling mechanism to the discontinuous morphology of the Cu2O grain growth is the migration of the phase boundaries between the oxides induced by oxygen out-diffusion along the moving boundary. An oxygen in-diffusion study was performed by annealing Cu2O and Cu4O3 in an oxygen ambient. The CuO phase nucleates randomly and rapidly in both Cu2O and Cu4O3 matrices. The small grain growth rate of CuO suggests that nucleation rather than grain growth is the predominant event during oxidation. The kinetics study of the reduction and oxidation of copper oxides shows that the two processes are asymmetrical and the latter is faster.

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].

Citation Format(s)

Oxidation and reduction of copper oxide thin films. / Li, Jian; Vizkelethy, G.; Revesz, P. et al.
In: Journal of Applied Physics, Vol. 69, No. 2, 1991, p. 1020-1029.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review