Exploiting human mobility patterns for gas station site selection

Research output: Chapters, Conference Papers, Creative and Literary Works (RGC: 12, 32, 41, 45)32_Refereed conference paper (with host publication)peer-review

17 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Title of host publicationDatabase Systems for Advanced Applications
Subtitle of host publicationProceedings, Part I
EditorsShamkant B. Navathe, Weili Wu, Shashi Shekhar, Xiaoyong Du, X. Sean Wang, Hui Xiong
PublisherSpringer International Publishing Switzerland
Pages242-257
Number of pages16
ISBN (Electronic)9783319320250
ISBN (Print)9783319320243
Publication statusPublished - Apr 2016
Externally publishedYes

Publication series

NameLecture Notes in Computer Science
Volume9642
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Title21st International Conference on Database Systems for Advanced Applications (DASFAA 2016)
LocationThe University of Texas at Dallas
PlaceUnited States
CityDallas
Period16 - 19 April 2016

Abstract

Advances in sensor, wireless communication, and information infrastructure such as GPS have enabled us to collect massive amounts of human mobility data, which are fine-grained and have global road coverage. These human mobility data, if properly encoded with semantic information (i.e. combined with Point of Interests (POIs)), is appealing for changing the paradigm for gas station site selection. To this end, in this paper, we investigate how to exploit newly-generated human mobility data for enhancing gas station selection. Specifically, we develop a ranking system for evaluating the business performances of gas stations based on waiting time of refueling events by mining human mobility data. Along this line, we first design a method for detecting taxi refueling events by jointly tracking dwell times, GPS trace angles, location sequences, and refueling cycles of the vehicles. Also, we extract the fine-grained discriminative features strategically from POI data, human mobility data and road network data within the neighborhood of gas stations, and perform feature selection by simultaneously maximizing relevance and minimizing redundancy based on mutual information. In addition, we learn a ranking model for predicting gas station crowdedness by exploiting learning to rank techniques. The extensive experimental evaluation on real-world data also show the advantages of the proposed method over existing approaches for gas site selection.

Research Area(s)

  • Gas station distribution, Refueling event detection, Site selection

Citation Format(s)

Exploiting human mobility patterns for gas station site selection. / Niu, Hongting; Liu, Junming; Fu, Yanjie et al.
Database Systems for Advanced Applications: Proceedings, Part I. ed. / Shamkant B. Navathe; Weili Wu; Shashi Shekhar; Xiaoyong Du; X. Sean Wang; Hui Xiong. Springer International Publishing Switzerland, 2016. p. 242-257 (Lecture Notes in Computer Science; Vol. 9642).

Research output: Chapters, Conference Papers, Creative and Literary Works (RGC: 12, 32, 41, 45)32_Refereed conference paper (with host publication)peer-review