Near- and mid-infrared photoluminescence in Ho3+ doped and Ho3+-Yb3+ codoped low-phonon-energy germanotellurite glasses

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

39 Scopus Citations
View graph of relations

Author(s)

  • Bo Zhou
  • Lili Tao
  • Clarence Yat-Yin Chan
  • Wei Jin
  • Yuen H. Tsang

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)132-137
Journal / PublicationJournal of Luminescence
Volume137
Online published4 Jan 2013
Publication statusPublished - May 2013

Abstract

Intense infrared emissions at 1.20 μm (Ho3+: 5I65I8 transition) and 2.0 μm (Ho3+: 5I75I8 transition) wavelengths from holmium-ytterbium (Ho3+-Yb 3+) codoped low-phonon-energy germanotellurite glasses and fibers were observed. In comparison to Ho3+-singly doped glass, the incorporation of Yb3+ as sensitizer increases the quantum efficiency of the 1.20 μm wavelength emission from 2.4% to 7.9% through efficient energy transfer from Yb3+(2F5/2) to Ho 3+(5I6). Emission of 1.38 μm originating from the Ho3+: (5F4,5S 2)→5I5 transition was also recorded under 488 nm excitation. The observation of both 1.20 and 1.38 μm wavelength emissions is primarily due to the low phonon energy of the germanotellurite glasses and is 770 cm-1 in accordance to the Raman spectrum. Excellent gain performance is predicted by the long lifetime and the large stimulated emission cross-section. The results suggest that low-phonon-energy germanotellurite glass is a promising candidate for optical amplification at relatively unexplored 1.20 and 1.38 μm wavelength regions, and lasing operation at the eye-safe 2.0 μm wavelength region. © 2013 Elsevier B.V.

Research Area(s)

  • Energy transfer, Ho3+ 1.20, 1.38 and 2.0 μm emissions, Low-phonon-energy germanotellurite glass, Photoluminescence

Citation Format(s)

Near- and mid-infrared photoluminescence in Ho3+ doped and Ho3+-Yb3+ codoped low-phonon-energy germanotellurite glasses. / Zhou, Bo; Tao, Lili; Yat-Yin Chan, Clarence et al.
In: Journal of Luminescence, Vol. 137, 05.2013, p. 132-137.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review