Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1859-1875 |
Journal / Publication | Computer Methods in Applied Mechanics and Engineering |
Volume | 192 |
Issue number | 15 |
Publication status | Published - 11 Apr 2003 |
Link(s)
Abstract
This paper concerns a numerical study of convergence properties of the boundary knot method (BKM) applied to the solution of 2D and 3D homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems. The BKM is a new boundary-type, meshfree radial function basis collocation technique. The method differentiates from the method of fundamental solutions (MFS) in that it does not need the controversial artificial boundary outside physical domain due to the use of non-singular general solutions instead of the singular fundamental solutions. The BKM is also generally applicable to a variety of inhomogeneous problems in conjunction with the dual reciprocity method (DRM). Therefore, when applied to inhomogeneous problems, the error of the DRM confounds the BKM accuracy in approximation of homogeneous solution, while the latter essentially distinguishes the BKM, MFS, and boundary element method. In order to avoid the interference of the DRM, this study focuses on the investigation of the convergence property of the BKM for homogeneous problems. The given numerical experiments reveal rapid convergence, high accuracy and efficiency, mathematical simplicity of the BKM. © 2003 Elsevier Science B.V. All rights reserved.
Research Area(s)
- Boundary elements, Boundary knot method, Meshfree, Method of fundamental solution, Radial basis function
Citation Format(s)
Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems. / Chen, W.; Hon, Y. C.
In: Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 15, 11.04.2003, p. 1859-1875.
In: Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 15, 11.04.2003, p. 1859-1875.
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review