Effects of active links on epidemic transmission over social networks

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

15 Scopus Citations
View graph of relations


Related Research Unit(s)


Original languageEnglish
Pages (from-to)614-621
Journal / PublicationPhysica A: Statistical Mechanics and its Applications
Online published25 Oct 2016
Publication statusPublished - 15 Feb 2017


A new epidemic model with two infection periods is developed to account for the human behavior in social network, where newly infected individuals gradually restrict most of future contacts or are quarantined, causing infectivity change from a degree-dependent form to a constant. The corresponding dynamics are formulated by a set of ordinary differential equations (ODEs) via mean-field approximation. The effects of diverse infectivity on the epidemic dynamics ​are examined, with a behavioral interpretation of the basic reproduction number. Results show that such simple adaptive reactions largely determine the impact of network structure on epidemics. Particularly, a theorem proposed by Lajmanovich and Yorke in 1976 is generalized, so that it can be applied for the analysis of the epidemic models with multi-compartments especially network-coupled ODE systems.

Research Area(s)

  • Adaptive behavior, Basic reproduction number, Contact network, Infectivity