An Interior-Point Differentiable Path-Following Method to Compute Stationary Equilibria in Stochastic Games

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

5 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Journal / PublicationINFORMS Journal on Computing
Online published25 Jan 2022
Publication statusOnline published - 25 Jan 2022

Abstract

The subgame perfect equilibrium in stationary strategies (SSPE) is the most important solution concept in applications of stochastic games, making it imperative to develop efficient methods to compute an SSPE. For this purpose, this paper develops an interior-point differentiable path-following method (IPM), which establishes a connection between an artificial logarithmic barrier game and the stochastic game of interest by adding a homotopy variable. IPM brings several advantages over the existing methods for stochastic games. On the one hand, IPM provides a bridge between differentiable pathfollowing methods and interior-point methods and remedies several issues of an existing homotopy method called the stochastic linear tracing procedure (SLTP). First, the starting stationary strategy profile can be arbitrarily chosen. Second, IPM does not need switching between different systems of equations. Third, the use of a perturbation term makes IPM applicable to all stochastic games rather than generic games only. Moreover, a well-chosen transformation of variables reduces the number of equations and variables by roughly one half. Numerical results show that the proposed method is more than three times as efficient as SLTP. On the other hand, the stochastic game can be reformulated as a mixed complementarity problem and solved by the PATH solver. We employ the proposed IPM and the PATH solver to compute SSPEs. Numerical results evince that for some stochastic games the PATH solver may fail to find an SSPE, whereas IPM is successful in doing so for all stochastic games, which confirms the reliability and stability of the proposed method.

Research Area(s)

  • stochastic games, subgame perfect equilibria, stationary strategies, interior-point method, path-following algorithm, MIXED COMPLEMENTARITY-PROBLEMS, POTENTIAL REDUCTION ALGORITHM, PERFECT EQUILIBRIA, MARKOV EQUILIBRIA, BARGAINING MODEL, HOMOTOPY, DECOMPOSITION, FRAMEWORK