Adaptive control on flexural waves by a piezoelectric-based elastic metasurface with hybrid shunting circuits

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

1 Scopus Citations
View graph of relations



Original languageEnglish
Journal / PublicationMechanics of Advanced Materials and Structures
Online published15 Feb 2023
Publication statusOnline published - 15 Feb 2023


In aspects of its simple configuration and tunability, piezoelectric-based metasurface has benefited over  its  mechanical  counterpart  in  adaptive  wavefront  manipulation.  By  tuning  the  circuitry  elements  in  the  shunting  circuits  properly,  the  equivalent  material  properties  of  the  metasurface  can be  modified  to  attain  a  complete  2π phase  shift  and  to  maintain  high  transmission  at  desired working  frequencies.  In  this  paper,  a  piezoelectric-based  elastic  metasurface  with  hybrid  shunting circuits  (NC–LC–NC shunts)  are  proposed  to  adaptively  control  the  propagation  of  flexural  waves.  Through  tuning  of  negative  capacitance  and  inductance  simultaneously,  the  proposed  elastic metasurface can cover a  phase shift  ranging  from 0 -2 π while having a high transmission  (≥0.7).  It  is  discovered  that  any  similar  metasurface  structural  design  with  solely  single  shunting  circuit presently available could not achieve the same results as the proposed elastic metasurface. In addition, analytical modeling based on equivalent Young’s modulus is developed and a finite element model is built to study the transmission and phase shift of the proposed metasurface. It is demonstrated  numerically  that  the  proposed  piezoelectric-based  elastic  metasurface  is  capable  of  performing  switchable  functionalities,  such  as  wave  refraction  and  focusing,  at  different  working frequencies (3500 Hz, 5000 Hz, etc.).

Research Area(s)

  • Adaptive control, hybrid shunting, inductance, metasurface, negative capacitance, piezoelectric