Local Gaussian process extrapolation for BART models with applications to causal inference

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Journal / PublicationJournal of Computational and Graphical Statistics
Online published26 Jul 2023
Publication statusOnline published - 26 Jul 2023

Abstract

Bayesian additive regression trees (BART) is a semi-parametric regression model offering state-of-the-art performance on out-of-sample prediction. Despite this success, standard implementations of BART typically suffer from inaccurate prediction and overly narrow prediction intervals at points outside the range of the training data. This paper proposes a novel extrapolation strategy that grafts Gaussian processes to the leaf nodes in BART for predicting points outside the range of the observed data. The new method is compared to standard BART implementations and recent frequentist resampling-based methods for predictive inference. We apply the new approach to a challenging problem from causal inference, wherein for some regions of predictor space, only treated or untreated units are observed (but not both). In simulation studies, the new approach boasts superior performance compared to popular alternatives, such as Jackknife+.

Research Area(s)

  • Tree, Extrapolation, Gaussian process, Predictive interval, XBART, XBCF