Efficient and Secure Skyline Queries over Vertical Data Federation

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

11 Scopus Citations
View graph of relations

Author(s)

  • Yuanyuan Zhang
  • Yexuan Shi
  • Chunbo Xue
  • Yi Xu
  • Ke Xu
  • Junping Du

Detail(s)

Original languageEnglish
Pages (from-to)9269-9280
Journal / PublicationIEEE Transactions on Knowledge and Data Engineering
Volume35
Issue number9
Online published15 Nov 2022
Publication statusPublished - Sept 2023
Externally publishedYes

Abstract

Skyline is a primitive operation in multi-objective decision applications and there is a growing demand to support such operations over a data federation, where the entire dataset is separately held by multiple data providers (a.k.a., silos). Data federations notably increase the amount of data available for data-intensive applications such as commercial recommendation and location based services. Yet they also challenge the conventional implementation of skyline queries because the raw data cannot be shared within the federation and the secure computation cross silos can be two or three orders of magnitude slower than plaintext computation. These constraints render existing solutions inefficient on data federation. In this work, we propose a novel local dominance based framework for efficient skyline queries over a vertical data federation. We decompose the skyline query into plaintext local dominance computations and secure result aggregations, which can perform as many computations in plaintext as possible without compromising security. We further propose a dedicate private set intersection based algorithm to accelerate the query processing. Extensive evaluations on both synthetic and real-world datasets show that compared with general-purpose secure multi-party computation techniques, our solutions reduce the time cost by up to 35.4× and communication cost by two orders of magnitude respectively. © 2022 IEEE.

Research Area(s)

  • Companies, Costs, Data Federation, Insurance, Multi-party computation, Private Set Intersection, Protocols, Query processing, Secure Multi-party Computation, Security, Skyline

Citation Format(s)

Efficient and Secure Skyline Queries over Vertical Data Federation. / Zhang, Yuanyuan; Shi, Yexuan; Zhou, Zimu et al.
In: IEEE Transactions on Knowledge and Data Engineering, Vol. 35, No. 9, 09.2023, p. 9269-9280.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review