Experimental investigation on NH3–H2O generator-absorber heat exchange (GAX) absorption heat pump

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

10 Scopus Citations
View graph of relations

Author(s)

  • Jian Wang
  • Wei Wu
  • Wenxing Shi
  • Xianting Li
  • Baolong Wang

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)337-349
Number of pages13
Journal / PublicationEnergy
Volume185
Online published9 Jul 2019
Publication statusPublished - 15 Oct 2019

Abstract

Compared with conventional fuel-direct-burning heating systems, heat-driven absorption heat pump has high efficiency. To further improve the heating performance, generator-absorber heat exchange (GAX) absorption heat pump was developed, but its experimental research was not enough. The parameters tested were usually just COP and heating capacity in the existing literature, the variation of some internal parameters were rarely measured and analyzed. Besides, the latent heat exchange between the generator and the absorber could not continue normally under high thermal lift (TCON-TEVA) and low thermal thrust (TGEN-TABS), instead, more sensible heat is transferred, the temperature overlap decreases or even disappears, and the circulation process of GAX cycle approaches to that of single-effect cycle. This phenomenon is named “cycle degradation”, and is crucial to understand the working principle of GAX for optimal design and control. The cycle degradation was only simulated under low evaporation temperature, but has not been analyzed with experimental data, the influence rules of other external operational parameters on the phenomenon are also not clear. Therefore, a prototype of GAX absorption heat pump is built up, many internal and external parameters are measured and used to investigate the cycle degradation and overall performance under different testing conditions. During the experiment, the COP is in the range of 1.185–1.506, the cycle degradation occurs when the “lifting factor (Eq [18])” is lower than 2.3. Moreover, the performance improves with the increase of driving temperature or low-grade heat source temperature, and deteriorates due to the rise of supply water temperature.

Research Area(s)

  • Absorption heat pump (AHP), Ammonia-water, Cycle failure, Prototype, Test

Citation Format(s)

Experimental investigation on NH3–H2O generator-absorber heat exchange (GAX) absorption heat pump. / Wang, Jian; Wu, Wei; Shi, Wenxing et al.
In: Energy, Vol. 185, 15.10.2019, p. 337-349.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review