Energy harvesting for jet engine monitoring

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

3 Scopus Citations
View graph of relations


  • Dengqing Cao
  • Wenhu Huang
  • Daniel J. Inman


Original languageEnglish
Article number104853
Journal / PublicationNano Energy
Online published11 May 2020
Publication statusPublished - Sep 2020


Sensors that provide critical information about jet engine performance are widely installed on static components but are rarely found on rotors because of their inaccessibility and extremely high rotation speeds. We present a new monitoring method, integrating energy harvesting technology with wireless sensors to achieve real-time self-powered engine monitoring. Energy harvesters, used to generate power from ambient vibration, are sustainable alternatives to batteries for achieving self-sustained long-term operation of electronic devices. By utilising structural nonlinearity, force amplification mechanism, and the piezoelectric effect, we show a 22.52-g energy harvester capable of high power output (78.87 mW), broad working bandwidth (22.5 Hz), and strong reliability (2100 RPM). Our approach breaks limitations from wired connections that are weighty and vulnerable to failures. We theoretically and experimentally analyse the nonlinear responses and demonstrate the harvester by constantly lighting 112 LEDs and a self-powered wireless sensor system in a jet engine. This work paves a new way for developing future monitoring systems for advanced jet engines and other rotating machinery applications.

Research Area(s)

  • energy harvesting, rotational, piezoelectric, self-powered, batteryless, wireless sensor

Citation Format(s)

Energy harvesting for jet engine monitoring. / Wang, Yilong; Yang, Zhengbao; Li, Pengyu; Cao, Dengqing; Huang, Wenhu; Inman, Daniel J.

In: Nano Energy, Vol. 75, 104853, 09.2020.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal