Bioinspired Supramolecular Slippery Organogels for Controlling Pathogen Spread by Respiratory Droplets

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

27 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Article number2102888
Journal / PublicationAdvanced Functional Materials
Volume31
Issue number34
Online published19 Jun 2021
Publication statusPublished - 20 Aug 2021

Link(s)

Abstract

Surface-deposited pathogens are sources for the spread of infectious diseases. Protecting public facilities with a replaceable or recyclable antifouling coating is a promising approach to control pathogen transmission. However, most antifouling coatings are less effective in preventing pathogen-contained respiratory droplets because these tiny droplets are difficult to repel, and the deposited pathogens can remain viable from hours to days. Inspired by mucus, an antimicrobial supramolecular organogel for the control of microdroplet-mediated pathogen spread is developed. The developed organogel coating harvests a couple of unique features including localized molecular control-release, readily damage healing, and persistent fouling-release properties, which are preferential for antifouling coating. Microdroplets deposited on the organogel surfaces will be spontaneously wrapped with a thin liquid layer, and will therefore be disinfected rapidly due to a mechanism of spatially enhanced release of bactericidal molecules. Furthermore, the persistent fouling-release and damage-healing properties will significantly extend the life-span of the coating, making it promising for diverse applications.

Research Area(s)

  • antimicrobial organogels, respiratory microdroplets, self-healing, slippery coating

Download Statistics

No data available