Functional Zone Based Hierarchical Demand Prediction For Bike System Expansion

Research output: Chapters, Conference Papers, Creative and Literary Works (RGC: 12, 32, 41, 45)32_Refereed conference paper (with host publication)peer-review

55 Scopus Citations
View graph of relations

Author(s)

  • Leilei Sun
  • Qiao Li
  • Jingci Ming
  • Yanchi Liu
  • Hui Xiong

Detail(s)

Original languageEnglish
Title of host publicationKDD 2017 - Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherACM New York
Pages957-966
Number of pages10
ISBN (Electronic)9781450348874
Publication statusPublished - 13 Aug 2017
Externally publishedYes

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
VolumePart F129685

Conference

Title23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2017)
PlaceCanada
CityHalifax
Period13 - 17 August 2017

Abstract

Bike sharing systems, aiming at providing the missing links in public transportation systems, are becoming popular in urban cities. Many providers of bike sharing systems are ready to expand their bike stations from the existing service area to surrounding regions. A key to success for a bike sharing systems expansion is the bike demand prediction for expansion areas. There are two major challenges in this demand prediction problem: First. the bike transition records are not available for the expansion area and second. station level bike demand have big variances across the urban city. Previous research efforts mainly focus on discovering global features, assuming the station bike demands react equally to the global features, which brings large prediction error when the urban area is large and highly diversified. To address these challenges, in this paper, we develop a hierarchical station bike demand predictor which analyzes bike demands from functional zone level to station level. Specifically, we first divide the studied bike stations into functional zones by a novel Bi-clustering algorithm which is designed to cluster bike stations with similar POI characteristics and close geographical distances together. Then, the hourly bike check-ins and check-outs of functional zones are predicted by integrating three influential factors: distance preference, zone-to-zone preference, and zone characteristics. The station demand is estimated by studying the demand distributions among the stations within the same functional zone. Finally, the extensive experimental results on the NYC Citi Bike system with two expansion stages show the advantages of our approach on station demand and balance prediction for bike sharing system expansions.

Research Area(s)

  • Bike sharing system, Clustering, Demand prediction

Citation Format(s)

Functional Zone Based Hierarchical Demand Prediction For Bike System Expansion. / Liu, Junming; Sun, Leilei; Li, Qiao et al.
KDD 2017 - Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM New York, 2017. p. 957-966 (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Vol. Part F129685).

Research output: Chapters, Conference Papers, Creative and Literary Works (RGC: 12, 32, 41, 45)32_Refereed conference paper (with host publication)peer-review