N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge linearly depends on inorganic carbon concentration

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

39 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)58-66
Journal / PublicationWater Research
Publication statusPublished - 1 May 2015
Externally publishedYes


The effect of inorganic carbon (IC) on nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB) was investigated over a concentration range of 0-12mmolC/L, encompassing typical IC levels in a wastewater treatment reactors. The AOB culture was enriched along with nitrite-oxidizing bacteria (NOB) in a sequencing batch reactor (SBR) to perform complete nitrification. Batch experiments were conducted with continuous carbon dioxide (CO2) stripping or at controlled IC concentrations. The results revealed a linear relationship between N2O production rate (N2OR) and IC concentration (R2=0.97) within the IC range studied, suggesting a substantial effect of IC on N2O production by AOB. Similar results were also obtained with an AOB culture treating anaerobic sludge digestion liquor. The fundamental mechanism responsible for this dependency is unclear; however, in agreement with previous studies, it was observed that the ammonia oxidation rate (AOR) was also influenced by the IC concentration, which could be well described by the Monod kinetics. These resulted in an exponential relationship between N2OR and AOR, as previously observed in experiments where AOR was altered by varying dissolved oxygen and ammonia concentrations. It is therefore possible that IC indirectly affected N2OR by causing a change in AOR. The observation in this study indicates that alkalinity (mostly contributed by IC) could be a significant factor influencing N2O production and should be taken into consideration in estimating and mitigating N2O emissions in wastewater treatment systems. © 2015 Elsevier Ltd.

Research Area(s)

  • Ammonia oxidizing bacteria, Exponential relationship, Inorganic carbon, Linear relationship, Nitrous oxide

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.