Mechanistic study of TRPM2-Ca2+-CAMK2-BECN1 signaling in oxidative stress-induced autophagy inhibition

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

78 Scopus Citations
View graph of relations

Author(s)

  • Qian Wang
  • Wenjing Guo
  • Baixia Hao
  • Yingying Lu
  • Connie W. M. Wong
  • Victor W.S. MA
  • Timothy T.C. Yip
  • Joseph Siu-Kie Au
  • Quan Hao
  • King-Ho Cheung
  • Wutian Wu
  • Gui-Rong Li
  • Jianbo Yue

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)1340-1354
Journal / PublicationAutophagy
Volume12
Issue number8
Online published24 Jun 2016
Publication statusPublished - 2016

Abstract

Reactive oxygen species (ROS) have been commonly accepted as inducers of autophagy, and autophagy in turn is activated to relieve oxidative stress. Yet, whether and how oxidative stress, generated in various human pathologies, regulates autophagy remains unknown. Here, we mechanistically studied the role of TRPM2 (transient receptor potential cation channel subfamily M member 2)-mediated Ca2+ influx in oxidative stress-mediated autophagy regulation. On the one hand, we demonstrated that oxidative stress triggered TRPM2-dependent Ca2+ influx to inhibit the induction of early autophagy, which renders cells more susceptible to death. On the other hand, oxidative stress induced autophagy (and not cell death) in the absence of the TRPM2-mediated Ca2+ influx. Moreover, in response to oxidative stress, TRPM2-mediated Ca2+ influx activated CAMK2 (calcium/calmodulin dependent protein kinase II) at levels of both phosphorylation and oxidation, and the activated CAMK2 subsequently phosphorylated BECN1/Beclin 1 on Ser295. Ser295 phosphorylation of BECN1 in turn decreased the association between BECN1 and PIK3C3/VPS34, but induced binding between BECN1 and BCL2. Clinically, acetaminophen (APAP) overdose is the most common cause of acute liver failure worldwide. We demonstrated that APAP overdose also activated ROS-TRPM2-CAMK2-BECN1 signaling to suppress autophagy, thereby causing primary hepatocytes to be more vulnerable to death. Inhibiting the TRPM2-Ca2+-CAMK2 cascade significantly mitigated APAP-induced liver injury. In summary, our data clearly demonstrate that oxidative stress activates the TRPM2-Ca2+-CAMK2 cascade to phosphorylate BECN1 resulting in autophagy inhibition. © 2016 Taylor & Francis.

Research Area(s)

  • acetaminophen, autophagy, BECN1, Ca2+, CAMK2, oxidative stress, reactive oxygen species, TRPM2

Citation Format(s)

Mechanistic study of TRPM2-Ca2+-CAMK2-BECN1 signaling in oxidative stress-induced autophagy inhibition. / Wang, Qian; Guo, Wenjing; Hao, Baixia et al.
In: Autophagy, Vol. 12, No. 8, 2016, p. 1340-1354.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review