A model averaging approach for the ordered probit and nested logit models with applications

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)1-41
Journal / PublicationJournal of Applied Statistics
Volume45
Issue number16
Early online date21 Mar 2018
Publication statusPublished - 2018

Abstract

This paper considers model averaging for the ordered probit and nested logit models, which are widely used in empirical research. Within the frameworks of these models, we examine a range of model averaging methods, including the jackknife method, which is proved to have an optimal asymptotic property in this paper. We conduct a large-scale simulation study to examine the behaviour of these model averaging estimators in finite samples, and draw comparisons with model selection estimators. Our results show that while neither averaging nor selection is a consistently better strategy, model selection results in the poorest estimates far more frequently than averaging, and more often than not, averaging yields superior estimates. Among the averaging methods considered, the one based on a smoothed version of the Bayesian Information criterion frequently produces the most accurate estimates. In three real data applications, we demonstrate the usefulness of model averaging in mitigating problems associated with the ‘replication crisis’ that commonly arises with model selection.

Research Area(s)

  • Hit rate, model averaging, model selection, Monte Carlo, nested logit, ordered probit, screening