Freezing point and solid-liquid interfacial free energy of stockmayer dipolar fluids : A molecular dynamics simulation study

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

10 Scopus Citations
View graph of relations



Original languageEnglish
Article number114705
Journal / PublicationJournal of Chemical Physics
Issue number11
Publication statusPublished - 21 Sept 2013
Externally publishedYes


Stockmayer fluids are a prototype model system for dipolar fluids. We have computed the freezing temperatures of Stockmayer fluids at zero pressure using three different molecular-dynamics simulation methods, namely, the superheating-undercooling method, the constant-pressure and constanttemperature two-phase coexistence method, and the constant-pressure and constant-enthalpy twophase coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with the dimensionless dipole moment μ *= 1, √ 2, √ 3 is 0.656 ± 0.001, 0.726 ± 0.002, and 0.835 ± 0.005, respectively. The freezing temperature increases with the dipolar strength. Moreover, for the first time, the solid-liquid interfacial free energies γ of the fcc (111), (110), and (100) interfaces are computed using two independent methods, namely, the cleavingwall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, i.e., γ 100 > γ110 > γ111. © 2013 AIP Publishing LLC.

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to