Superstrong Ionogel Enabled by Coacervation-Induced Nanofibril Assembly for Sustainable Moisture Energy Harvesting

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Detail(s)

Original languageEnglish
Pages (from-to)12970-12980
Journal / PublicationACS Nano
Volume18
Issue number20
Online published10 May 2024
Publication statusPublished - 21 May 2024

Abstract

Ionogels have grabbed significant interest in various applications, from sensors and actuators to wearable electronics and energy storage devices. However, current ionogels suffer from low strength and poor ionic conductivity, limiting their performance in practical applications. Here, inspired by the mechanical reinforcement of natural biomacromolecules through noncovalent aggregates, a strategy is proposed to construct nanofibril-based ionogels through complex coacervation-induced assembly. Cellulose nanofibrils (CNFs) can bundle together with poly(ionic liquid) (PIL) to form a superstrong nanofibrous network, in which the ionic liquid (IL) can be retained to form ionogels with high liquid inclusion and ionic conductivity. The strength of the CNF-PIL-IL ionogels can be tuned by the IL content over a wide range of up to 78 MPa. The optical transparency, high strength, and hygroscopicity enabled them to be promising candidates in moist-electricity generation and applications such as energy harvesting windows and wearable power generators. In addition, the ionogels are degradable and the ionogel-based generators can be recycled through dehydration. Our strategy suggests perspectives for the fabrication of high-strength and multifunctional ionogels for sustainable applications. © 2024 American Chemical Society.

Research Area(s)

  • cellulose nanofibril, complex coacervation, high strength, ionogel, moisture-enabled electricity generation