Effect of Zr addition on microstructure and mechanical properties of CoCrFeNiZrx high-entropy alloy thin films

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

8 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Pages (from-to)771–776
Journal / PublicationApplied Nanoscience (Switzerland)
Volume11
Issue number3
Online published27 May 2019
Publication statusPublished - Mar 2021

Abstract

As the technology of microscale devices evolves to smaller dimensions, the newly surged high-entropy alloys (HEAs), in particular high entropy alloy thin films (HEAFs), manifest excellent properties for practical applications. However, limited studies to date focused on microstructures and their impact on mechanical properties of HEAFs. In this work, we systematically investigated the relationship between microstructure and mechanical properties of CoCrFeNiZrx (x = 0, 0.3, 0.5, 1) high-entropy alloy thin films. A transition from single-phase crystal to amorphous structure was observed with increasing Zr concentration from 0 to 20.7 at.%. In the intermediate Zr concentration ranging from 7.0 to 12.9 at.%, Zr addition renders a crystal–amorphous dual-phase structure with Zr element segregation and a peak hardness of 6.7 GPa. These findings not only provide deep insight into understanding alloying effects on microstructure evolution and mechanical properties of HEAFs, but also present valuable information for designing ultrastrong high-entropy alloys for practical applications, such as microelectronic devices, lightweight lattices and advanced coating industry.

Research Area(s)

  • High-entropy alloys, Sputtering, Thin films, Microstructure, Hardness, Deformation mechanism

Citation Format(s)