Rational design of bio-inspired high-performance ambipolar organic semiconductor materials based on indigo and its derivatives
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 12-25 |
Journal / Publication | Organic Electronics |
Volume | 24 |
Publication status | Published - 26 May 2015 |
Externally published | Yes |
Link(s)
Abstract
Indigoids have received much attention as the candidates of sustainable ambipolar organic semiconductor. However, the low charge carrier mobilities extremely limit their practical applications. Therefore, in-depth understanding of their electronic-structure properties and rational molecular modifications are urgently required. Here, we propose a promising strategy to design ambipolar organic semiconductors based on indigo fragments. Moreover, we predicted the organic crystal structures by evolutionary algorithm combined with DFT-D method. Charge transport properties have been significantly improved for the designed molecules, such as narrower energy gaps, higher electron affinity, larger transfer integrals as well as much smaller reorganization energies for hole and electron. Thusly, remarkable ambipolar charge transport behavior has been predicted, for example, the charge carrier mobilities are up to μh/μe = 7.71/5.42 cm2 V-1 s-1 for NN-indigo-6,6′-2CN and μh/μe = 5.15/2.13 cm2 V-1 s-1 for C9-NN-indigo-6,6′-2CN respectively.
Research Area(s)
- Ambipolar charge transport, Crystal structure prediction, Environmentally friendly organic semiconductors, Indigoids, Marcus electron transfer theory
Bibliographic Note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.
Citation Format(s)
Rational design of bio-inspired high-performance ambipolar organic semiconductor materials based on indigo and its derivatives. / Zhang, Shou-Feng; Chen, Xian-Kai; Fan, Jian-Xun et al.
In: Organic Electronics, Vol. 24, 26.05.2015, p. 12-25.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review