Theoretical modelling of the electrode thickness effect on maximum power point of dye-sensitized solar cell

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

64 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)35-42
Journal / PublicationCanadian Journal of Chemical Engineering
Volume86
Issue number1
Publication statusPublished - Feb 2008
Externally publishedYes

Abstract

The maximum power point (MPP) of a dye-sensitized solar cell (DSSC) is often more important than the open-circuit voltage and the short-circuit current as MPP better represents the DSSC power output and energy conversion efficiency. In this investigation, the DSSC J-V characteristics and MPP were studied using a simple theoretical electron diffusion model. Parametric analyses were performed to determine the particular effect of electrode thickness on the MPP output. The analytical results are well consistent with the experimental results published in the literature. In the optimization analysis, it was specially found that the optimal electrode thickness for the highest MPP is rather insensitive to the operating conditions. It implies that an optimally designed DSSC can be always operated at its highest MPP regardless of any geographical, seasonal, and solar hour factors. Such an important attribute facilitates the design and manufacture of DSSC for worldwide commercialization at competitive costs. © 2008 Canadian Society for Chemical Engineering.

Research Area(s)

  • Dye-sensitized solar cell (DSSC), Electron diffusion model, Maximum power point, Optimal electrode thickness