Theoretical modelling of the electrode thickness effect on maximum power point of dye-sensitized solar cell
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 35-42 |
Journal / Publication | Canadian Journal of Chemical Engineering |
Volume | 86 |
Issue number | 1 |
Publication status | Published - Feb 2008 |
Externally published | Yes |
Link(s)
Abstract
The maximum power point (MPP) of a dye-sensitized solar cell (DSSC) is often more important than the open-circuit voltage and the short-circuit current as MPP better represents the DSSC power output and energy conversion efficiency. In this investigation, the DSSC J-V characteristics and MPP were studied using a simple theoretical electron diffusion model. Parametric analyses were performed to determine the particular effect of electrode thickness on the MPP output. The analytical results are well consistent with the experimental results published in the literature. In the optimization analysis, it was specially found that the optimal electrode thickness for the highest MPP is rather insensitive to the operating conditions. It implies that an optimally designed DSSC can be always operated at its highest MPP regardless of any geographical, seasonal, and solar hour factors. Such an important attribute facilitates the design and manufacture of DSSC for worldwide commercialization at competitive costs. © 2008 Canadian Society for Chemical Engineering.
Research Area(s)
- Dye-sensitized solar cell (DSSC), Electron diffusion model, Maximum power point, Optimal electrode thickness
Citation Format(s)
Theoretical modelling of the electrode thickness effect on maximum power point of dye-sensitized solar cell. / Ni, Meng; Leung, Michael K. H.; Leung, Dennis Y. C.
In: Canadian Journal of Chemical Engineering, Vol. 86, No. 1, 02.2008, p. 35-42.
In: Canadian Journal of Chemical Engineering, Vol. 86, No. 1, 02.2008, p. 35-42.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review