Generation-Level Parallelism for Evolutionary Computation : A Pipeline-Based Parallel Particle Swarm Optimization

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

40 Scopus Citations
View graph of relations


  • Jian-Yu Li
  • Zhi-Hui Zhan
  • Run-Dong Liu
  • Chuan Wang
  • Jun Zhang

Related Research Unit(s)


Original languageEnglish
Pages (from-to)4848-4859
Journal / PublicationIEEE Transactions on Cybernetics
Issue number10
Online published4 Nov 2020
Publication statusPublished - Oct 2021


Due to the population-based and iterative-based characteristics of evolutionary computation (EC) algorithms, parallel techniques have been widely used to speed up the EC algorithms. However, the parallelism usually performs in the population level where multiple populations (or subpopulations) run in parallel or in the individual level where the individuals are distributed to multiple resources. That is, different populations or different individuals can be executed simultaneously to reduce running time. However, the research into generation-level parallelism for EC algorithms has seldom been reported. In this article, we propose a new paradigm of the parallel EC algorithm by making the first attempt to parallelize the algorithm in the generation level. This idea is inspired by the industrial pipeline technique. Specifically, a kind of EC algorithm called local version particle swarm optimization (PSO) is adopted to implement a pipeline-based parallel PSO (PPPSO, i.e., P3SO). Due to the generation-level parallelism in P3SO, when some particles still perform their evolutionary operations in the current generation, some other particles can simultaneously go to the next generation to carry out the new evolutionary operations, or even go to further next generation(s). The experimental results show that the problem-solving ability of P3SO is not affected while the evolutionary speed has been substantially accelerated in a significant fashion. Therefore, generation-level parallelism is possible in EC algorithms and may have significant potential applications in time-consumption optimization problems.

Research Area(s)

  • Approximation algorithms, Central Processing Unit, Clocks, Evolutionary computation (EC), parallel, Parallel processing, particle swarm optimization (PSO), pipeline technique, Pipelines, Sociology, Statistics

Citation Format(s)

Generation-Level Parallelism for Evolutionary Computation: A Pipeline-Based Parallel Particle Swarm Optimization. / Li, Jian-Yu; Zhan, Zhi-Hui; Liu, Run-Dong et al.
In: IEEE Transactions on Cybernetics, Vol. 51, No. 10, 10.2021, p. 4848-4859.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review