Global-Local Balanced Low-Rank Approximation of Hyperspectral Images for Classification
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 2013-2024 |
Number of pages | 12 |
Journal / Publication | IEEE Transactions on Circuits and Systems for Video Technology |
Volume | 32 |
Issue number | 4 |
Online published | 7 Jul 2021 |
Publication status | Published - Apr 2022 |
Link(s)
Abstract
This paper explores the problem of recovering the discriminative representation of a hyperspectral remote sensing image (HRSI), which suffers from spectral variations, to boost its classification accuracy. To tackle this challenge, we propose a new method, namely local-global balanced low-rank approximation (GLB-LRA), which can increase the similarity between pixels belonging to an identical category while promoting the discriminability between pixels of different categories. Specifically, by taking advantage of the particular structural spatial information of HRSIs, we exploit the low-rankness of an HRSI robustly in both spatial and spectral domains from the perspective of local and global balance. We mathematically formulate GLB-LRA as an explicit optimization problem and propose an iterative algorithm to solve it efficiently. Experimental results over three commonly-used benchmark datasets demonstrate the significant superiority of our method over state-of-the-art methods.
Research Area(s)
- classification, Computational modeling, Dimensionality reduction, Hyperspectral image, Hyperspectral imaging, Imaging, low-rank, Optimization, spectral variation, Tensors, Three-dimensional displays
Citation Format(s)
Global-Local Balanced Low-Rank Approximation of Hyperspectral Images for Classification. / Liu, Hui; Jia, Yuheng; Hou, Junhui et al.
In: IEEE Transactions on Circuits and Systems for Video Technology, Vol. 32, No. 4, 04.2022, p. 2013-2024.
In: IEEE Transactions on Circuits and Systems for Video Technology, Vol. 32, No. 4, 04.2022, p. 2013-2024.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review