Interfacial adhesion of polymeric adhesive film on different surfaces in the fabrication of polymer photonic devices

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

10 Scopus Citations
View graph of relations


Related Research Unit(s)


Original languageEnglish
Pages (from-to)655-663
Journal / PublicationJournal of Materials Science: Materials in Electronics
Issue number6
Publication statusPublished - Jun 2007


One main critical issue in the fabrication of polymer optical devices is the adhesion strength of polymeric layer to the substrate. High adhesion strength is desirable and critical in order to avoid peeling out of polymeric layer from the substrate due to stress generated during fabrication, handling and lifetime. Therefore, the aim of this study is to investigate the interfacial adhesion of polymeric adhesive film on different possible substrate surfaces such as pure silicon wafer, silica on silicon wafer, and thin metal layer (Chromium-Cr) on silicon wafer under different processing conditions. Surface morphology of the substrates before deposition was characterized by atomic force microscope (AFM). Adhesive shear button was made on those substrates by using photolithography process and the interfacial adhesion was measured by using a Dage D2400 shear tester. The effect of exposing in high temperature and typical damp heat condition on the interfacial adhesion was also studied. We found that the best adhesion performance was obtained for the case using Cr thin in all processing conditions, especially under heat treatment and damp heat test. From this study, we suggest that a thin layer of metal film on silicon wafer can be use to improve the adhesion and the reliability of the polymer photonic devices. The oxidized silica on silicon wafer is an alternative choice at the expense of reducing adhesion performance. Moreover, using silica layer has the advantage over Cr layer that one fabrication step can be reduced since the silica layer itself can effectively act as the lower cladding of the devices. © Springer Science+Business Media, LLC 2007.

Citation Format(s)