The N, P co-doped carbon-loading Ni3P@Ni heterojunction nanocomposites derived from polybenzimidazoles grafted with oxygen-phosphorus group as high-efficiency electrocatalyst for oxygen evolution reaction
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 26519-26530 |
Journal / Publication | Journal of Materials Chemistry A |
Volume | 11 |
Issue number | 48 |
Online published | 27 Nov 2023 |
Publication status | Published - 28 Dec 2023 |
Link(s)
Abstract
Interfacial engineering-induced structural optimization is considered an expectant strategy to elevate the electrochemical activities of earth-abundant electrocatalysts. Herein, the pioneering architecture of Ni3P@Ni heterojunctions embedded onto N, P co-doped C substrates was effectuated by a combination of the wet-impregnation process of Ni/polybenzimidazoles containing an oxygen-phosphorus group (PBI-OP) precursor and phosphating/carbonization treatment to obtain the Ni3P@Ni/CNP electrocatalyst. It provides substantial Ni3P@Ni heterojunction interfacial sites, and the strong interaction between Ni3P@Ni nanosheets and CNP microspheres promotes the rearrangement of the electronic configuration to modify the electrochemically active sites while enhancing the structural stability and promoting interfacial electron transfer, thus improving the electrocatalytic activity of OER. In addition, the large number of pyridine N species on the electrocatalyst accelerated the diffusion of O2, further reducing the overpotential of OER. DFT calculation unveiled that Ni3P@Ni/CNP has a lower activation energy than IrO2, indicating its extremely positive electrocatalytic effect on the OER kinetics. Ni3P@Ni/CNP-M exhibits a low overpotential of 239 mV, a low Tafel slope of 52 mV dec−1, and good stability at a current density of 10 mA cm−2 in 1 M KOH electrolyte. Therefore, interfacial engineering through multi-component structures can provide new inspiration for designing advanced OER electrocatalysts. © The Royal Society of Chemistry 2023.
Citation Format(s)
The N, P co-doped carbon-loading Ni3P@Ni heterojunction nanocomposites derived from polybenzimidazoles grafted with oxygen-phosphorus group as high-efficiency electrocatalyst for oxygen evolution reaction. / Wang, Gang; Tang, Wenshuai; Yang, Shuai et al.
In: Journal of Materials Chemistry A, Vol. 11, No. 48, 28.12.2023, p. 26519-26530.
In: Journal of Materials Chemistry A, Vol. 11, No. 48, 28.12.2023, p. 26519-26530.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review