Kras gene codon 12 mutation detection enabled by gold nanoparticles conducted in a nanobioarray chip

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

20 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)58-64
Journal / PublicationAnalytical Biochemistry
Issue number1
Publication statusPublished - 1 Mar 2014
Externally publishedYes


This study employs a nanobioarray (NBA) chip for multiple biodetection of single base pair mutations at the Kras gene codon 12. To distinguish between the mutant and wild-type target DNAs, current bioarray methods use high-temperature hybridization of the targets to the allele-specific probes. However, these techniques need prior temperature optimization and become harder to implement in the case of the detection of multiple mutations. We aimed to detect these mutations at a single temperature (room temperature), enabled by the use of gold nanoparticles (AuNPs) on the bioarray created within nanofluidic channels. In this method, a low amount of target oligonucleotides (5 fmol) and polymerase chain reaction (PCR) products (300 pg) were first loaded on the AuNP surface, and then these AuNP-bound targets were introduced into the channels of a polydimethylsiloxane (PDMS) glass chip. The targets hybridized to their complementary probes at the intersection of the target channels to the pre-printed oligonucleotide probe lines on the glass surface, creating a bioarray. Using this technique, fast and high-throughput multiple discrimination of the Kras gene codon 12 were achieved at room temperature using the NBA chip, and the specificity of the method was proved to be as high as that with the temperature stringency method. © 2013 Elsevier Inc. All rights reserved.

Research Area(s)

  • Gold nanoparticle, Kras gene, Microarray, Nanobioarray chip, Single nucleotide polymorphism, Target DNA

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to