Predicting and explaining patronage behavior toward web and traditional stores using neural networks : A comparative analysis with logistic regression

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

164 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)514-531
Journal / PublicationDecision Support Systems
Issue number2
Publication statusPublished - Jan 2006
Externally publishedYes


Web stores, where buyers place orders over the Internet, have emerged to become a prevalent sales channel. In this research, we developed neural network models, which are known for their capability of modeling noncompensatory decision processes, to predict and explain consumer choice between web and traditional stores. We conducted an empirical survey for the study. Specifically, in the survey, the purchases of six distinct products from web stores were contrasted with the corresponding purchases from traditional stores. The respondents' perceived attribute performance was then used to predict the customers' channel choice between web and traditional stores. We have provided statistical evidence that neural networks significantly outperform logistic regression models for most of the surveyed products in terms of the predicting power. To gain more insights from the models, we have identified the factors that have significant impact on customers' channel attitude through sensitivity analyses on the neural networks. The results indicate that the influential factors are different across product categories. The findings of the study offer a number of implications for channel management. © 2004 Elsevier B.V. All rights reserved.

Research Area(s)

  • Choice process, Consumer behavior, E-commerce, Logit modeling, Neural networks

Citation Format(s)