Profiling MicroRNAs with Associated Spatial Dynamics in Acute Tissue Slices
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 4881–4892 |
Journal / Publication | ACS Nano |
Volume | 15 |
Issue number | 3 |
Online published | 10 Mar 2021 |
Publication status | Published - 23 Mar 2021 |
Link(s)
Abstract
MicroRNAs (miRNAs) are suggested to play important roles in the pathogenesis and progress of human diseases with heterogeneous regulation in different types of cells. However, limited technique is available for profiling miRNAs with both expression and spatial dynamics. Here, we describe a platform for multiplexed in situ miRNA profiling in acute tissue slices. The technique uses diamond nanoneedles functionalized with RNA-binding proteins to directly isolate targeted miRNAs from the cytosol of a large population of cells to achieve a quasi-single-cell analysis for a tissue sample. In addition to a quantitative evaluation of the expression level of particular miRNAs, the technique also provides the relative spatial dynamics of the cellular miRNAs in associated cell populations, which was demonstrated to be useful in analyzing the susceptibility and spatial reorganization of different types of cells in the tissues from normal or diseased animals. As a proof-of-concept, in MK-801-induced schizophrenia model, we found that astrocytes, instead of neurons, are more heterogeneously affected in the hippocampus of rats that underwent repeated injection of MK-801, showing an expression fingerprint related to differentially down-regulated miRNA-135a and miRNA-143; the associated astrocyte subpopulation is also more spatially dispersed in the hippocampus, suggesting an astrocyte dysregulation in the induced schizophrenia animals.
Research Area(s)
- microRNA, spatial transcriptome, diamond nanoneedles, cellular heterogeneity, in situ profiling, brain disease
Citation Format(s)
Profiling MicroRNAs with Associated Spatial Dynamics in Acute Tissue Slices. / Xie, Kai; Wang, Zixun; Qi, Lin et al.
In: ACS Nano, Vol. 15, No. 3, 23.03.2021, p. 4881–4892.
In: ACS Nano, Vol. 15, No. 3, 23.03.2021, p. 4881–4892.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review