Probing Surface Band Bending of Surface-Engineered Metal Oxide Nanowires
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 9366-9372 |
Journal / Publication | ACS Nano |
Volume | 6 |
Issue number | 11 |
Online published | 24 Oct 2012 |
Publication status | Published - 27 Nov 2012 |
Externally published | Yes |
Link(s)
Abstract
We in situ probed the surface band bending (SBB) by ultraviolet photoelectron spectroscopy (UPS) in conjunction with field-effect transistor measurements on the incompletely depleted ZnO nanowires (NWs). The diameter range of the NWs is ca. 150-350 nm. Several surface treatments (i.e., heat treatments and Au nanoparticle (NP) decoration) were conducted to assess the impact of the oxygen adsorbates on the SBB. A 100 °C heat treatment leads to the decrease of the SBB to 0.74 ± 0.15 eV with 29.9 ± 3.0 nm width, which is attributed to the removal of most adsorbed oxygen molecules from the ZnO NW surfaces. The SBB of the oxygen-adsorbed ZnO NWs is measured to be 1.53 ± 0.15 eV with 43.2 ± 2.0 nm width. The attachment of Au NPs to the NW surface causes unusually high SBB (2.34 ± 0.15 eV with the wide width of 53.3 ± 1.6 nm) by creating open-circuit nano-Schottky junctions and catalytically enhancing the formation of the charge O2 adsorbates. These surface-related phenomena should be generic to all metal oxide nanostructures. Our study is greatly beneficial for the NW-based device design of sensor and optoelectronic applications via surface engineering.
Research Area(s)
- metal oxide, nanowire, oxygen vacancy, Schottky junction, surface band bending, ZnO
Citation Format(s)
Probing Surface Band Bending of Surface-Engineered Metal Oxide Nanowires. / Chen, Cheng-Ying; Retamal, Jose Ramon Duran; Wu, I-Wen et al.
In: ACS Nano, Vol. 6, No. 11, 27.11.2012, p. 9366-9372.
In: ACS Nano, Vol. 6, No. 11, 27.11.2012, p. 9366-9372.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review