Probabilistic models for capturing more physicochemical properties on protein-protein interface

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

15 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)1798-1809
Journal / PublicationJournal of Chemical Information and Modeling
Volume54
Issue number6
Online published31 May 2014
Publication statusPublished - 23 Jun 2014

Abstract

Protein-protein interactions play a key role in a multitude of biological processes, such as signal transduction, de novo drug design, immune responses, and enzymatic activities. It is of great interest to understand how proteins interact with each other. The general approach is to explore all possible poses and identify near-native ones with the energy function. The key issue here is to design an effective energy function, based on various physicochemical properties. In this paper, we first identify two new features, the coupled dihedral angles on the interfaces and the geometrical information on π-π interactions. We study these two features through statistical methods: a mixture of bivariate von Mises distributions is used to model the correlation of the coupled dihedral angles, while a mixture of bivariate normal distributions is used to model the orientation of the aromatic rings on π-π interactions. Using 6438 complexes, we parametrize the joint distribution of each new feature. Then, we propose a novel method to construct the energy function for protein-protein interface prediction, which includes the new features as well as the existing energy items such as dDFIRE energy, side-chain energy, atom contact energy, and amino acid energy. Experiments show that our method outperforms the state-of-the-art methods, ZRANK and ClusPro. We use the CAPRI evaluation criteria, Irmsd value, and Fnat value. On Benchmark v4.0, our method has an average Irmsd value of 3.39 Å and Fnat value of 62%, which improves upon the average Irmsd value of 3.89 Å and Fnat value of 49% for ZRANK, and the average Irmsd value of 3.99 Å and F nat value of 46% for ClusPro. On the CAPRI targets, our method has an average Irmsd value of 3.56 Å and Fnat value of 42%, which improves upon the average Irmsd value of 4.27 Å and Fnat value of 39% for ZRANK, the average Irmsd value of 5.15 Å and Fnat value of 30% for ClusPro. © 2014 American Chemical Society.