Preparation and properties of the novel nanocrystal and polymer composite films for electro-optic applications

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)22_Publication in policy or professional journal

1 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)285-290
Journal / PublicationMaterials Research Society Symposium - Proceedings
Publication statusPublished - 2003


TitleMaterials and Devices for Smart Systems
PlaceUnited States
CityBoston, MA
Period1 - 5 December 2003


Novel nanocrystals and polymer composite thin films for the applications of electro-optical devices were prepared. We used PbTiO3 nanocrystals as a nonlinear chromophore (guest) in the NLO polymer system. The transparent polymer polyetherketone (PEK-c) was chosen as the polymer host due to its high glass transition temperature. The PbTiO3 nanocrystals were synthesized successfully by the chemical solution decomposition method. The size of the PbTiO3 nanocrystals was estimated to be 30-40 nm. The weight ratio of PbTiO3 nanocrystals to polymer polyetherketone was 15%. The composite thin films of PbTiO3 / PEK-c were prepared by spin-coating technique. The films were then electrically poled to induce asymmetry in the material by heating the films to a temperature close to their glass transition, and applying an electric field. The refractive indices of the un-poled composite PbTiO3 / PEK-c film were found to be 1.55165 for 633 nm and 1.65352 for 414 nm by using the Metricon prism coupling system. In the poled composite PbTiO3 / PEK-c film sample, the TE- and TM-indices differences were found to be 0.02945 for 633 nm and 0.03915 for 414 nm, showing very good optical anisotropy properties. Dielectric constant ε of the film was determined to be 7.32 at room temperature at 100 KHz using an Impedance Analyzer. The electro-optic coefficient, γ33, of poled PbTiO3 / PEK-c composite film was measured to be 18.34 pm/V at 633 nm under room temperature by the simple transmission technique. The factor F2 = n7 γ2 /ε, figures of merit, was estimated to be 1546. The relaxation time constant was calculated to be 5836 min.