Porous Al2O3-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Article number | 845 |
Journal / Publication | Nanomaterials |
Volume | 10 |
Issue number | 5 |
Online published | 28 Apr 2020 |
Publication status | Published - May 2020 |
Externally published | Yes |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85084999751&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(8f66bb72-0fab-4b7a-b219-3ea507f23e8e).html |
Abstract
Ceramic-based nanocomposite membranes are gaining great attention in various applications, such as water treatment; gas separation; oil and gas, amid their superior fouling resistance and remarkable chemical/thermal stability. Here, we report for the first time the use of spark plasma sintering (SPS) process to fabricate a porous alumina–carbon nanotubes (Al2O3–CNT) nanocomposite membrane for water treatment. The challenge is this work is to achieve a balance between the amount of porosity, desired for a high water flux, and the membrane strength level, required to resist the applied pressure during a water flow experiment. The effect of SPS process parameters (pressure, temperature, heating rate, and holding time) on the microstructure and properties of the developed membrane was investigated and correlated. A powder mixture composed of Al2O3 and 5 wt % CNT was prepared with the addition of starch as a pore former and gum Arabic and sodium dodecyl sulfate as dispersants. The powder mixture was then sintered using SPS to produce a solid but porous nanocomposite membrane. The structure and microstructure of the developed membrane were characterized using X-ray diffraction and field emission scanning electron microscopy. The performance of the membrane was assessed in terms of porosity, permeability, and mechanical properties. Moreover, the adsorption capability of the membrane was performed by evaluating its removal efficacy for cadmium (II) from water. The microstructural analysis revealed that CNT were distributed within the alumina matrix and located mainly along the grain boundaries. The permeability and strength were highly influenced by the sintering pressure and temperature, respectively. The results indicated that the membrane sintered at a pressure of 10 MPa, temperature of 1100 °C, holding time of 5 min, and heating rate of 200 °C/min exhibited the best combination of permeability and strength. This developed membrane showed a significant removal efficiency of 97% for cadmium (II) in an aqueous solution.
Research Area(s)
- membrane, carbon nanotubes, alumina, ceramic nanocomposite, spark plasma sintering, water treatment
Citation Format(s)
Porous Al2O3-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment. / Hussein, Mohamed Abdrabou; Shahzad, Hafiz Khurram; Patel, Faheemuddin et al.
In: Nanomaterials, Vol. 10, No. 5, 845, 05.2020.
In: Nanomaterials, Vol. 10, No. 5, 845, 05.2020.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available