Photon upconversion in core-shell nanoparticles
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1318-1330 |
Journal / Publication | Chemical Society Reviews |
Volume | 44 |
Issue number | 6 |
Online published | 24 Jul 2014 |
Publication status | Published - 21 Mar 2015 |
Link(s)
DOI | DOI |
---|---|
Document Link | Links |
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-84922381756&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(0f34065c-d7be-4884-ba61-9f7d1945b676).html |
Abstract
Photon upconversion generally results from a series of successive electronic transitions within complex energy levels of lanthanide ions that are embedded in the lattice of a crystalline solid. In conventional lanthanide-doped upconversion nanoparticles, the dopant ions homogeneously distributed in the host lattice are readily accessible to surface quenchers and lose their excitation energy, giving rise to weak and susceptible emissions. Therefore, present studies on upconversion are mainly focused on core-shell nanoparticles comprising spatially confined dopant ions. By doping upconverting lanthanide ions in the interior of a core-shell nanoparticle, the upconversion emission can be substantially enhanced, and the optical integrity of the nanoparticles can be largely preserved. Optically active shells are also frequently employed to impart multiple functionalities to upconversion nanoparticles. Intriguingly, the core-shell design introduces the possibility of constructing novel upconversion nanoparticles by exploiting the energy exchange interactions across the core-shell interface. In this tutorial review, we highlight recent advances in the development of upconversion core-shell nanoparticles, with particular emphasis on the emerging strategies for regulating the interplay of dopant interactions through core-shell nanostructural engineering that leads to unprecedented upconversion properties. The improved control over photon energy conversion will open up new opportunities for biological and energy applications.
Citation Format(s)
Photon upconversion in core-shell nanoparticles. / Chen, Xian; Peng, Denfeng; Ju, Qiang et al.
In: Chemical Society Reviews, Vol. 44, No. 6, 21.03.2015, p. 1318-1330.
In: Chemical Society Reviews, Vol. 44, No. 6, 21.03.2015, p. 1318-1330.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review