Patterns and Crucial Regulation of Alternative Splicing During Early Development in Zebrafish

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

1 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Article number167821
Journal / PublicationJournal of Molecular Biology
Volume434
Issue number21
Online published8 Sept 2022
Publication statusPublished - 15 Nov 2022

Link(s)

Abstract

Many vertebrate genes generate multiple transcript variants that may encode functionally distinct protein isoforms, but the transcriptomes of various developmental stages are poorly defined. Identifying the transcriptome and its regulation during the normal developmental process is the key to deciphering the developmental stage-specific functions of genes. Here we presented a systematic assessment of the temporal alternative splicing (AS) events during the critical development stages to capture the dynamic gene expression changes and AS in zebrafish. An unexpected transcriptome complexity generated by AS was observed during zebrafish development. The patterns of AS events varied substantially among developmental stages despite the similarities in the total proportion of AS genes. We further found that AS afforded substantial functional diversification of genes through the generation of stage-specific AS events from broadly protein-coding genes as an essential developmental regulatory mechanism. Skipped exon (SE) showed the strongest signals among developmental AS (devAS), suggesting that devAS events generated by SE may be necessary for the normal development of zebrafish. Most developmental genes regulated by AS mechanisms were not modulated in terms of their overall expression levels, indicating that AS shaped the transcriptome independently from transcriptional regulation during development. 128-cell stage was a critical stage for gene transcription during embryonic development. Splicing factors as an essential developmental regulator underwent AS in the potential autoregulatory feedback loop and expressed multiple isoforms. Thus, zebrafish development was shaped by an interplay of programs controlling gene expression levels and AS. Overall, we provided a global view of developmental patterns of AS during zebrafish development and revealed that AS transitions were the crucial regulatory component of zebrafish embryonic development.

Research Area(s)

  • alternative splicing, development, skipped exon, splicing factors, zebrafish

Download Statistics

No data available