Optimal convergence rate of the vanishing shear viscosity limit for compressible Navier-Stokes equations with cylindrical symmetry
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 99-126 |
Journal / Publication | Journal de Mathématiques Pures et Appliquées |
Volume | 146 |
Online published | 23 Sept 2020 |
Publication status | Published - Feb 2021 |
Link(s)
Abstract
We consider the initial boundary value problem for the isentropic compressible Navier-Stokes equations with cylindrical symmetry. The existence of boundary layers is well-known when the shear viscosity vanishes. In this paper, we derive explicit Prandtl type boundary layer equations and prove the global in time stability of the boundary layer profile together with the optimal convergence rate of the vanishing shear viscosity limit without any smallness assumption on the initial and boundary data.
Research Area(s)
- Boundary layer, Compressible Navier-Stokes equations, Global stability, Vanishing shear viscosity
Citation Format(s)
Optimal convergence rate of the vanishing shear viscosity limit for compressible Navier-Stokes equations with cylindrical symmetry. / Wen, Huanyao; Yang, Tong; Zhao, Xinhua et al.
In: Journal de Mathématiques Pures et Appliquées, Vol. 146, 02.2021, p. 99-126.
In: Journal de Mathématiques Pures et Appliquées, Vol. 146, 02.2021, p. 99-126.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review