Optimal convergence rate of the vanishing shear viscosity limit for compressible Navier-Stokes equations with cylindrical symmetry

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

3 Scopus Citations
View graph of relations

Author(s)

  • Huanyao Wen
  • Tong Yang
  • Xinhua Zhao
  • Changjiang Zhu

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)99-126
Journal / PublicationJournal de Mathématiques Pures et Appliquées
Volume146
Online published23 Sept 2020
Publication statusPublished - Feb 2021

Abstract

We consider the initial boundary value problem for the isentropic compressible Navier-Stokes equations with cylindrical symmetry. The existence of boundary layers is well-known when the shear viscosity vanishes. In this paper, we derive explicit Prandtl type boundary layer equations and prove the global in time stability of the boundary layer profile together with the optimal convergence rate of the vanishing shear viscosity limit without any smallness assumption on the initial and boundary data.

Research Area(s)

  • Boundary layer, Compressible Navier-Stokes equations, Global stability, Vanishing shear viscosity

Citation Format(s)

Optimal convergence rate of the vanishing shear viscosity limit for compressible Navier-Stokes equations with cylindrical symmetry. / Wen, Huanyao; Yang, Tong; Zhao, Xinhua et al.
In: Journal de Mathématiques Pures et Appliquées, Vol. 146, 02.2021, p. 99-126.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review