Optical and electrical properties of two-dimensional palladium diselenide

George Zhang, Matin Amani, Apoorva Chaturvedi, Chaoliang Tan, James Bullock, Xiaohui Song, Hyungjin Kim, Der-Hsien Lien, Mary C. Scott, Hua Zhang, Ali Javey*

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

87 Citations (Scopus)
32 Downloads (CityUHK Scholars)

Abstract

Two-dimensional (2D) noble-metal dichalcogenides exhibit exceptionally strong thickness-dependent bandgaps, which can be leveraged in a wide variety of device applications. A detailed study of their optical (e.g., optical bandgaps) and electrical properties (e.g., mobilities) is important in determining potential future applications of these materials. In this work, we perform detailed optical and electrical characterization of 2D PdSe2 nanoflakes mechanically exfoliated from a single-crystalline source. Layer-dependent bandgap analysis from optical absorption results indicates that this material is an indirect semiconductor with bandgaps of approximately 1.37 and 0.50 eV for the monolayer and bulk, respectively. Spectral photoresponse measurements further confirm these bandgap values. Moreover, temperature-dependent electrical measurements of a 6.8-nm-thick PdSe2 flake-based transistor show effective electron mobilities of 130 and 520 cm2V-1s-1 at 300 K and 77 K, respectively. Finally, we demonstrate that PdSe2 can be utilized for short-wave infrared photodetectors. A room-temperature specific detectivity (D*) of 1.8 × 1010 cm Hz1/2 W-1 at 1 μm with a band edge at 1.94 μm is achieved on a 6.8-nm-thick PdSe2 flake-based photodetector.

Original languageEnglish
Article number253102
JournalApplied Physics Letters
Volume114
Issue number25
Online published24 Jun 2019
DOIs
Publication statusPublished - 24 Jun 2019

Funding

Device fabrication and measurements were supported by the Defense Advanced Research Projects Agency under Contract No. HR0011-16-1-0004. Synthesis work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05CH11231 within the Electronic Materials Program (KC1201). The work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. H.Z. thanks the support from ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center and the Start-Up Grant from the City University of Hong Kong.

Research Keywords

  • TRANSITION

Publisher's Copyright Statement

  • COPYRIGHT TERMS OF DEPOSITED FINAL PUBLISHED VERSION FILE: This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in George Zhang, Matin Amani, Apoorva Chaturvedi, Chaoliang Tan, James Bullock, Xiaohui Song, Hyungjin Kim, Der-Hsien Lien, Mary C. Scott, Hua Zhang, and Ali Javey , "Optical and electrical properties of two-dimensional palladium diselenide", Appl. Phys. Lett. 114, 253102 (2019) and may be found at https://doi.org/10.1063/1.5097825.

Fingerprint

Dive into the research topics of 'Optical and electrical properties of two-dimensional palladium diselenide'. Together they form a unique fingerprint.

Cite this