One-dimensional drift-flux correlations for two-phase flow in medium-size channels

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

13 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)85-100
Journal / PublicationExperimental and Computational Multiphase Flow
Volume1
Issue number2
Publication statusPublished - 1 Jun 2019
Externally publishedYes

Abstract

The drift-flux parameters such as distribution parameter and drift velocity are critical parameters in the one-dimensional two-fluid model used in nuclear thermal-hydraulic system analysis codes. These parameters affect the drag force acting on the gas phase. The accurate prediction of the drift-flux parameters is indispensable to the accurate prediction of the void fraction. Because of this, the current paper conducted a state-of-the-art review on one-dimensional drift-flux correlations for various flow channel geometries and flow orientations. The essential conclusions were: (1) a channel geometry affected the distribution parameter, (2) a boundary condition (adiabatic or diabatic) affected the distribution parameter in a bubbly flow, (3) the drift velocity for a horizontal channel could be approximated to be zero, and (4) the distribution parameter developed for a circular channel was not a good approximation to calculate the distribution parameter for a sub-channel of the rod bundle. In addition to the above, the review covered a newly proposed concept of the two-group drift-flux model to provide the constitutive equation to close the modified gas mixture momentum equation of the two-fluid model mathematically. The review was also extended to the existing drift-flux correlations applicable to a full range of void fraction (Chexel-Lellouche correlation and Bhagwat-Ghajar correlation).

Research Area(s)

  • distribution parameter, drift-flux model, interfacial drag force, interfacial transport equation, nuclear thermal-hydraulic analysis

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.