On the derivation of an admissibility condition for phase boundary propagation in an SMA bar based on a 3-D formulation

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

1 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number102442
Journal / PublicationWave Motion
Volume92
Online published5 Oct 2019
Publication statusPublished - Jan 2020

Abstract

There is some considerable difficulty in determining the solution uniquely for a propagating phase boundary in shape memory alloy (SMA) bar. In this paper, we establish an admissibility condition starting from a three-dimensional (3-D) internal-variable formulation to resolve this issue. We adopt a 3-D formulation in literature which is based on a constitutive model with specific forms of the Helmholtz free energy and dissipation rate. Then the 3-D dynamical equations are reduced to the 1-D rod equations for three phase regions (coupled with the radial effect and surface condition) by using two small parameters. Connection conditions at the phase interfaces are determined. By considering the traveling-wave solution for the rod system, we eventually derive three conditions across a sharp phase boundary corresponding to the 1-D sharp-interface model, including the two usual jump conditions and an additional condition. The third condition is then used to supplement the 1-D sharp-interface model to study an impact problem. The unique solution is constructed analytically for all possible impact velocity, including three kinds of wave patterns according to different levels of the impact velocity. The results are compared with those obtained by the maximal dissipation rate criterion.

Research Area(s)

  • Admissibility condition, Dynamical phase transitions, Impact problem, Rod theory, Shape memory alloys