On inverse problems for several coupled PDE systems arising in mathematical biology

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number86
Journal / PublicationJournal of Mathematical Biology
Volume87
Issue number6
Online published14 Nov 2023
Publication statusPublished - Dec 2023

Abstract

In this paper, we propose and study several inverse problems of identifying/determining unknown coefficients for a class of coupled PDE systems by measuring the average flux data on part of the underlying boundary. In these coupled systems, we mainly consider the non-negative solutions of the coupled equations, which are consistent with realistic settings in biology and ecology. There are several salient features of our inverse problem study: the drastic reduction of the measurement/observation data due to averaging effects, the nonlinear coupling of multiple equations, and the non-negative constraints on the solutions, which pose significant challenges to the inverse problems. We develop a new and effective scheme to tackle the inverse problems and achieve unique identifiability results by properly controlling the injection of different source terms to obtain multiple sets of mean flux data. The approach relies on certain monotonicity properties which are related to the intrinsic structures of the coupled PDE system. We also connect our study to biological applications of practical interest. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Research Area(s)

  • Comparison principle, Inverse coefficient problems, Mathematical biology, Monotonicity, Nonlinear coupled parabolic systems, Unique identifiability