ODAM : Gradient-based Instance-Specific Visual Explanations for Object Detection
Research output: Chapters, Conference Papers, Creative and Literary Works › RGC 32 - Refereed conference paper (with host publication) › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Title of host publication | The Eleventh International Conference on Learning Representations |
Publisher | International Conference on Learning Representations, ICLR |
Publication status | Published - May 2023 |
Publication series
Name | International Conference on Learning Representations, ICLR |
---|
Conference
Title | 11th International Conference on Learning Representations (ICLR 2023) |
---|---|
Location | Hybrid |
Place | Rwanda |
City | Kigali |
Period | 1 - 5 May 2023 |
Link(s)
Document Link | Links
|
---|---|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85194012452&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(6bdd4a8c-66b6-41f4-8832-c976f5d76894).html |
Abstract
We propose the gradient-weighted Object Detector Activation Maps (ODAM), a visualized explanation technique for interpreting the predictions of object detectors. Utilizing the gradients of detector targets flowing into the intermediate feature maps, ODAM produces heat maps that show the influence of regions on the detector's decision for each predicted attribute. Compared to previous works classification activation maps (CAM), ODAM generates instance-specific explanations rather than class-specific ones. We show that ODAM is applicable to both one-stage detectors and two-stage detectors with different types of detector backbones and heads, and produces higher-quality visual explanations than the state-of-the-art both effectively and efficiently. We next propose a training scheme, Odam-Train, to improve the explanation ability on object discrimination of the detector through encouraging consistency between explanations for detections on the same object, and distinct explanations for detections on different objects. Based on the heat maps produced by ODAM with Odam-Train, we propose Odam-NMS, which considers the information of the model's explanation for each prediction to distinguish the duplicate detected objects. We present a detailed analysis of the visualized explanations of detectors and carry out extensive experiments to validate the effectiveness of the proposed ODAM. © 2023 11th International Conference on Learning Representations, ICLR 2023. All rights reserved.
Citation Format(s)
ODAM: Gradient-based Instance-Specific Visual Explanations for Object Detection. / Zhao, Chenyang; Chan, Antoni B.
The Eleventh International Conference on Learning Representations. International Conference on Learning Representations, ICLR, 2023. (International Conference on Learning Representations, ICLR ).
The Eleventh International Conference on Learning Representations. International Conference on Learning Representations, ICLR, 2023. (International Conference on Learning Representations, ICLR ).
Research output: Chapters, Conference Papers, Creative and Literary Works › RGC 32 - Refereed conference paper (with host publication) › peer-review