Object-level Scene Context Prediction
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 5280-5292 |
Journal / Publication | IEEE Transactions on Pattern Analysis and Machine Intelligence |
Volume | 44 |
Issue number | 9 |
Online published | 27 Apr 2021 |
Publication status | Published - Sep 2022 |
Link(s)
Abstract
Contextual information plays an important role in solving various image and scene understanding tasks. Prior works have focused on the extraction of contextual information from an image and use it to infer the properties of some object(s) in the image or understand the scene behind the image, e.g., context-based object detection, recognition and semantic segmentation. In this paper, we consider an inverse problem, i.e., how to hallucinate the missing contextual information from the properties of standalone objects. We refer to it as object-level scene context prediction. This problem is difficult, as it requires extensive knowledge of the complex and diverse relationships among objects in the scene. We propose a deep neural network, which takes as input the properties (i.e., category, shape, and position) of a few standalone objects to predict an object-level scene layout that compactly encodes the semantics and structure of the scene context where the given objects are. Quantitative experiments and user studies demonstrate that our model can generate more plausible scene contexts than the baselines. Our model also enables the synthesis of realistic scene images from partial scene layouts. Finally, we validate that our model internally learns useful features for scene recognition and fake scene detection.
Research Area(s)
- Context modeling, Generators, Layout, object inference, object properties, Scene context, scene understanding, Semantics, Shape, Task analysis, Visualization
Citation Format(s)
Object-level Scene Context Prediction. / Qiao, Xiaotian; Zheng, Quanlong; Cao, Ying et al.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, No. 9, 09.2022, p. 5280-5292.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review